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Abstract. Metamagnetism in YCo2 and LuCo2 is investigated in the spin-fluctuation theory,
considering the contribution from both the zero-point and the thermal spin fluctuation. The meta-
magnetic transition at low temperature and the temperature dependence of the paramagnetic suscept-
ibility at finite temperature are investigated in a self-consistent numerical calculation based on the
spin-fluctuation theory and good agreements with experimental results have been obtained in a
systematic way. It is shown that the effect of strong enhancement of the paramagnetic susceptibility
and the electronic specific coefficient at low temperature can be explained satisfactorily by taking
into consideration the zero-point spin fluctuation.

1. Introduction

The itinerant-electron metamagnetic transition induced by an external magnetic field in d-
electron systems is a very interesting phenomenon and it has been investigated from both
experimental and theoretical points of view.

Experimentally, it is well known that a typical metamagnetic transition is observed
in various Co-based Laves phase compounds such as YCo2 and LuCo2 (Goto et al 1990,
1994, Sakakibara et al 1990). Moreover, these materials are strongly exchange-enhanced
paramagnets and show a broad maximum in the temperature dependence of the paramagnetic
susceptibility at room temperature. In particular, it is observed in the pseudo-binary
compounds Y(Co1−xAlx)2 that both the critical field Bc of the metamagnetic transition and the
susceptibility-maximum temperature Tmax decrease with increasing concentration of Al, and a
ferromagnetic state is stabilized at a certain concentration. More recently, similar phenomena
have been observed in Lu(Co1−xGdx)2 (Saito et al 1997).

Theoretically, the electronic structure and magnetism in cubic Laves phase transition metal
compounds have been investigated systematically by Yamada and co-workers (Yamada 1988).
Moreover, Yamada has discussed itinerant-electron metamagnetism at finite temperature within
the phenomenological theory of spin fluctuations based on the Ginzburg–Landau free-energy
functional and explained the universal properties observed in the magnetic materials showing
the metamagnetic transition (Yamada 1993). It has been found that the itinerant-electron meta-
magnetism originates from the characteristic shape of the density of the electronic states (DOS)
in these metamagnetic materials, which has a valley structure near the Fermi energy.

Incidentally, it has been believed that itinerant-electron metamagnetism at low temperature
can be described within the Stoner theory, i.e. in the Hartree–Fock theory. In the conventional
spin-fluctuation theory, only thermally excited spin fluctuations have been taken into
consideration and the effects of zero-point spin fluctuation have been left out of consideration.
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As pointed out by Solontsov and Wagner (1994, 1995), it has become commonplace to say that
they give rise to the temperature-independent effects which may be renormalized in the effective
model parameters, e.g., in the exchange interaction constant. However, the strong enhancement
of the paramagnetic susceptibility and the electronic specific heat coefficient at low temperature
cannot be explained by the use of the effective value of the Coulomb interaction U in the
Hartree–Fock theory, as discussed in the next section. In fact, they reach χ

exp
p /χband

p ∼ 26
and γ

exp
e /γ band

e ∼ 6 for YCo2, as obtained by the use of the DOS given by Tanaka and Harima
(1998). Here, χ

exp
p and γ

exp
e are the experimental values of the paramagnetic susceptibility and

the electronic specific heat coefficient of YCo2 and χband
p and γ band

e are the ones calculated
from the DOS. Recently, the importance of the zero-point spin fluctuation has been pointed
out (Solontsov and Wagner 1994, 1995, Lacroix et al 1996). Solontsov and Wagner have
presented a generalized theory of the quantum Ginzburg–Landau approach to account for
the large zero-point spin-fluctuation and spin-anharmonicity effects over a wide temperature
range both below and far above the Curie temperature. Their theory has been applied to weak
itinerant magnets such as MnSi and the itinerant-electron antiferromagnetism of Y(Sc)Mn2

(Lacroix et al 1996).
Previously, we presented a spin-fluctuation theory of itinerant-electron metamagnetism

(Nishiyama and Hirooka 1997) which is considered to be an extension of the theory of
metamagnetism given by Yamada (1993) to the case with large amplitudes of the moment
and spin fluctuation. However, the static approximation is used and so the zero-point spin
fluctuation is not considered there. In this work the metamagnetism of YCo2 and LuCo2

at low and finite temperature will be investigated on the basis of the spin-fluctuation theory
considering both the zero-point and the thermal spin fluctuation which is based on our previous
work (Hirooka and Shimizu (1988a, b), hereafter referred as I). In the next section the Hartree–
Fock theory is applied to these systems at zero temperature and it is shown that it does not yield
good results in the investigation of the metamagnetic transition for these systems. In section 3,
the work of I is extended to the multi-band system and a summary of our spin-fluctuation
theory is given. Calculated results for the metamagnetism of YCo2 and LuCo2 at zero and
finite temperature are given in the final section and a discussion is given in the remainder.

2. Difficulties in the Hartree–Fock theory

This section will be devoted to the exposition of some difficulties in the Hartree–Fock theory
of metamagnetism of YCo2 at low temperature. In this section and in the following sections it
is assumed that only d electrons of a Co atom in YCo2 contribute to the metamagnetism. The
high-field magnetization mCo(h) is obtained from a self-consistent equation:

mCo(h) =
∫ ζ0

−∞

[
ρCo

+ (ω) − ρCo
− (ω)

]
dω (1)

where

ρCo
σ (ω) = ρCo

(
ω + σh + σ

U

2
mCo

)

is the DOS of Co with σ = + or −, h an external magnetic field and U the Coulomb interaction
of d electrons in Co atoms. On the other hand, the paramagnetic susceptibility χCo

p at zero
temperature is given in the Hartree–Fock theory as follows:

χCo
p = 2ρCo(ζ0)

1 − UρCo(ζ0)
(2)
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where ζ0 is the Fermi energy. Now, many calculations of the electronic structure of YCo2

have been carried out. In figure 1 the DOS calculated recently by Tanaka and Harima
(1998) is shown. The DOS calculated by various methods are very similar to each other
and characteristic as regards the shape—which consists of two sharp peaks mainly for d states
of the Co atom—and the Fermi energy ζ0 is in the valley, as shown in figure 1. However, the
height of the DOS at the Fermi energy, the bandwidth and so on are quantitatively different.
For example, we have ρCo(ζ0) = 1.44 eV−1/(atom spin) in the tight-binding method (Yamada
1988), ρCo(ζ0) = 0.47 eV−1/(atom spin) in the self-consistent APW method (Aoki and Yamada
1989) and ρCo(ζ0) = 0.55 eV−1/(atom spin) in the full-potential linear APW method (Tanaka
and Harima 1998). In the following numerical calculation we will use the DOS given by
Tanaka and Harima. The high-field magnetization and paramagnetic susceptibility at zero
temperature for YCo2 have been calculated from equations (1) and (2). In figure 2 the high-
field magnetization is shown by a broken line in the case of U = 1.084 eV. It yields Bc � 70 T
which is nearly equal to an experimental value (Goto et al 1990, 1994). The experimental
results for the magnetization are shown in figure 2 by a dotted line. In table 1 calculated
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Figure 1. (a) The Co d component of the electronic density of states (DOS) of YCo2 (Tanaka and
Harima 1998). The vertical broken line shows the position of the Fermi energy.
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Figure 2. The high-field magnetization of YCo2 at zero temperature: results calculated within the
Hartree–Fock theory for U = 1.084 eV (broken line, HF) and in the spin-fluctuation theory for
U = 1.068 eV and q̄c = 0.491 (solid line, SF); the dotted line (EXP) shows the experimental result
(Goto et al 1990, 1994).



5672 S Hirooka

Table 1. Calculated paramagnetic susceptibilities χCo
p and the critical fields Bc of YCo2 at zero

temperature within the Hartree–Fock theory for various values of the Coulomb interaction U

obtained by the use of the DOS given by Tanaka and Harima (1998).

U Bc χCo
p

(eV) (T) (10−3 emu mol−1)

Metamagnetic transition 1.084 70.0a 0.178
Ferromagnetic instability 1.105 (UET

c ) 0.0 0.182
χCo

p = χ
exp
p 1.744 1.83a

Stoner condition 1.818 (UST
c ) ∞

a Experimental values (Goto et al 1990, 1994).

paramagnetic susceptibilities χCo
p are shown for four values of U which are chosen as giving

Bc � 70.0 T, Bc = 0.0 T, χCo
p = χ

exp
p and UχCo

p = 1. Here, χ
exp
p = 1.83 × 10−3 emu mol−1

is an experimental value and UχCo
p = 1 is the Stoner condition.

As is well known, the itinerant-electron metamagnetic materials can satisfy the extended
condition of ferromagnetism given by Shimizu (1964, 1965) because of the valley structure in
the DOS. This condition is given by U � UET

c and UET
c � UST

c where UST
c is determined by

the Stoner condition. So, because U � UET
c in the stable paramagnetic state, we have

χCo
p � χET

p = 2ρCo(ζ0)/[1 − UET
c ρCo(ζ0)].

Now, the use of the DOS given by Tanaka and Harima (1998) gives UET
c = 1.105 eV,

UST
c = 1.818 eV and χET

p = 0.182 × 10−3 emu mol−1 as shown in table 1. Finally, we have
χCo

p /χband
p � 2.6, where χband

p = 2ρCo(ζ0). This suggests to us that the strong enhancement
of the paramagnetic susceptibility of YCo2 cannot be explained by adjusting the effective value
of U within the Hartree–Fock theory. As regards the metamagnetic transition, the calculated
high-field magnetization curve shows too large a hysteresis compared with experimental results
as shown in figure 2. In general, the shape of the magnetization curve seems to be too sensitive
to the shape of the DOS near the Fermi energy in the Hartree–Fock theory.

3. Spin-fluctuation theory of itinerant-electron metamagnetism

In this section, results from I (Hirooka and Shimizu 1988a, b) are extended to the multi-band
case and a summary of them will be given sufficient for the needs of the numerical calculation
in this work. We assume as the multi-band Hubbard Hamiltonian the following form taking
into consideration Hund coupling:

H =
∑

l,m,i,j,σ

t lm
ij a

†
liσ amjσ − U

4

∑
i

(∑
l

�σli

)2

(3)

where a
†
liσ and amjσ are creation and annihilation operators for electrons in the orbital state l,

at lattice site i and in spin state σ (σ = + or −). Moreover, t lm
ij are hopping energies, U is the

Coulomb interaction, �σli = (σ x
li , σ

y

li , σ z
li), σ x

li = a
†
li+ali−+a

†
li−ali+, σ

y

li = −i(a†
li+ali−−a

†
li−ali+)

and σ z
li = a

†
li+ali+ − a

†
li−ali−. In the Hamiltonian equation (3), the spin fluctuations are

considered exclusively and the charge fluctuations are ignored. Now, the interaction term in
equation (3) is expressed in the harmonic form of the spin density. Thus, we can apply the
Stratonovich–Hubbard transformation to it and use the functional integral formalism as in I. By
following this procedure, we can get the desired form of the result for the multi-band system.
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In short, the interaction term in equation (3) suggests to us that d electrons in the ith site feel
magnetic fields

�hi = U

2

∑
l

�σli

caused by the other d electrons. In the functional integral formalism, corresponding to the
operators �hi , the magnetic fields �ηi(u) for the c-number are introduced and the Hamiltonian
equation (3) is transformed into a one-body Hamiltonian Hf (u) as follows:

Hf (u) =
∑

l,m,i,j,σ

t lm
ij a

†
liσ (u)amjσ (u) −

∑
i

�ηi(u) ·
∑

l

�σli(u) (4)

where A(u) = euH0 Ae−uH0 (A is an operator), u is the imaginary time and

H0 =
∑

l,m,i,j,σ

t lm
ij a

†
liσ amjσ .

The magnetic field �ηi(u) consists of a constant part �η0 and a fluctuating part δ�ηi(u) which obey
a Gaussian distribution as follows:

�ηi(u) = �η0 + δ�ηi(u). (5)

The constant field �η0 is determined by

η0 = U

2
〈〈Mz

i (u)〉
T
〉
δη

(6)

where Mz
i (u) = ∑

l σ z
li(u). Moreover, the symbol 〈· · ·〉T means the thermal average under the

Hamiltonian Hf (u) and 〈· · ·〉δη the average with respect to the Gaussian distribution for the
fluctuating field δηi(u). The variances of the Gaussian distribution are determined from

〈δηα
i (u) δηα′

j (u′)〉 = U 2

4β
χ

ij

αα′(u, u′) α, α′ = x, y, z (7)

where

χ
ij

αα′(u, u′) = β
〈{

T [Mα
i (u)Mα′

j (u′)]
}

c

〉
δη

is a generalized susceptibility, β an inverse temperature, T a time-ordering operator and

{T [A(u)B(u)]}c ≡ 〈T [A(u)B(u)]〉T − 〈A(u)〉T 〈B(u)〉T .

Finally, the many-body problem described by the Hamiltonian in equation (3) is transformed to
a one-body problem described by the Hamiltonian Hf (u) in which each d electron moves in a
constant field �η0 and a random fluctuating field δ�ηi(u) caused self-consistently by themselves,
from equations (6) and (7).

However, there are still more difficulties in realistic numerical calculations of these results
and further approximations are required. Following Hertz and Klenin (1974, 1977) as in
I, we adopt the local mean-field approximation for the variances in equation (7). Then,
local correlations of the spin fluctuation in space and time, which dominate the variances in
equation (7), are taken into consideration exclusively. They are given as 〈δηα

i (u) δηα′
i (+u)〉 =

χii
αα′(u, u) and are not dependent on the site i and the imaginary time u because of the

translational symmetry for the space and the time. Moreover, we can actually do slightly
better than treating the correlations as purely local by taking δ�ηi(u) in equation (4) constant
in time and uniform in space as δ�η. This treatment is justified for slowly varying components
of the spin fluctuation in space and time.

The results are summarized as follows. When each d electron moves in the magnetic field,
�η = (δηt , η0 +δηz) is caused by the other d electrons, where η0 is a uniform and static field and
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δ�η = (δηt , δηz) are random magnetic fields generated by the spin fluctuation of d electrons. If
an external field h exists, we have �η = (δηt , h + η0 + δηz). Here the subscripts t and z denote
the transverse and the longitudinal components, respectively. The distribution of fluctuating
fields is a Gaussian and it is given as

g(δη) ∝ exp

{
−1

2

[(
δηt

σt

)2

+

(
δηz

σz

)2
]}

. (8)

By the use of the dynamical susceptibility χα(�q, ωl) with the Matsubara frequencies ωl =
2πl/β, the variances, σt and σz, of the distribution g(δη) of fluctuating fields are given as

σ 2
α = U 2

4β

∑
�q,ωl

χα(�q, ωl)

= U 2

4π

∑
�q

∫ ∞

0
Im χα(�q, ω) dω +

U 2

2π

∑
�q

∫ ∞

0

1

eβω − 1
Im χα(�q, ω) dω

≡ (σ 0
α )2 + (σ T

α )2 α = z, t (9)

where the first term σ 0
α denotes the zero-point spin fluctuation and the second term σ T

α

denotes the thermal spin fluctuation. The dynamical susceptibilities χz(�q, ωl) and χt(�q, ωl) =
[χ−+(�q, ωl) + χ+−(�q, ωl)]/2 are given as

χs(�q, ω) = 2χ̂s(�q, ω)

1 − Uχ̂s(�q, ω)
s = z, + −, − + (10)

where χ̂z(�q, ω), χ̂+−(�q, ω) and χ̂−+(�q, ω) are obtained by averaging the longitudinal and the
transverse dynamical susceptibilities of a non-interacting electron system in the presence of
the magnetic field �η with respect to the distribution g(δη). The expressions for them are given
in I and their uniform and static components are written in the form

χ̂z ≡ χ̂z(0, 0) = 〈
χ0z(η) cos2 θ + χ0t (η) sin2 θ

〉
δη

χ̂t ≡ χ̂+−(0, 0) = χ̂−+(0, 0) = 1

2

〈
χ0z(η) sin2 θ + χ0t (η)(1 + cos2 θ)

〉
δη

(11)

where cos θ = ηz/η, sin θ = δηt/η, η = (δη2
t + η2

z )1/2, ηz = h + η0 + δηz and the symbol
〈· · ·〉δη denotes the average over the Gaussian distribution g(δη) in equation (8). Moreover,
χ0z(η) and χ0t (η) in equation (11) are given as

χ0z(η) = 2χ0+(η)χ0−(η)

χ0+(η) + χ0−(η)

χ0t (η) = m(η)

2η

where

χ0σ (η) = −
∫ ∞

−∞

∂f (ω)

∂ω
ρ(ω − ση) dω σ = +, −

m(η) =
∫ ∞

−∞
f (ω)[ρ(ω + η) − ρ(ω − η)] dω.

f (ω) = [exp{β(ω − ζ ) + 1]−1 is the Fermi distribution function and ρ(ω) the DOS. The
constant molecular field η0, which is induced by the external magnetic field h, is determined
self-consistently by

η0 = U

2
〈m(η) cos θ〉δη (12)
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which is obtained from the condition of thermodynamic equilibrium, where Mz(h) =
〈m(η) cos θ〉δη is the magnetization under the external magnetic field h. By putting h = 0
and so η0 = 0 in equations (10) and (11), the paramagnetic susceptibility is obtained as

χp = 2χ̂p

1 − Uχ̂p

χ̂p = 1

3
〈2χ0t (δη) + χ0z(δη)〉δη .

(13)

A mass enhancement factor γehs is defined by

γehs = 〈ρ〉
ρ(ζ0)

(14)

where

〈ρ〉 ≡ 1

2
〈ρ(ζ − δη) + ρ(ζ + δη)〉δη (15)

and ρ(ζ0) is the value of the DOS at the Fermi energy ζ0. Equations (8)–(15) form a self-
consistent set of equations for use in the numerical calculation.

Before proceeding to the next section, we briefly refer to the effects of the zero-point spin
fluctuation on the paramagnetic susceptibility and the electronic specific heat coefficient at low
temperature. The paramagnetic susceptibility χp in equation (13) and the mass enhancement
factor γehs in equation (14) can be expanded in a Taylor’s series in powers of σ 2

0 at T = 0 as

1

χp

� 1

2

(
1

ρ0
− U

)
− 5

12ρ0
2

[
ρ

(2)
0 − 3(ρ

(1)
0 )2

ρ0

]
σ0

2

γehs � 1 +
1

2ρ0

[
ρ

(2)
0 − (ρ

(1)
0 )2

4ρ0

]
σ0

2

(16)

where ρ
(n)
0 = [dnρ(ω)/dωn]ω=ζ0 and ζ0 is the Fermi energy for σ0 = 0. The first terms of

equations (16) correspond to results within the Hartree–Fock theory. In general the second
terms of equation (16) are, respectively, negative and positive for the systems having a valley
structure in the DOS near the Fermi energy such as YCo2. So, it is found that the zero-point spin
fluctuation enhances the paramagnetic susceptibility and the electronic specific heat coefficient
at low temperature in these systems.

4. Calculated results and discussion

It is considered that the metamagnetism in YCo2 and LuCo2 is dominated by the spin magnetism
of Co atoms; thus in the following numerical calculation the contributions from Y atoms and
Lu atoms to the metamagnetism are neglected for simplicity and so only the spin magnetism
of Co atoms is taken into consideration. Now, it is very difficult in reality to get χ̂s(�q, ω)

in equation (10) concretely and also to perform a numerical estimation of the integral in
equation (9). So, we approximate χ̂s(�q, ω) in equation (10) as

χ̂s(�q, ω) ≡ χ̂s(0, 0)Fs(�q, ω)

Fs(�q, ω) = χ̂s(�q, ω)

χ̂s(0, 0)
≈ χ

f
s (�q, ω)

χ
f
s (0, 0)

s = z, + −, − +
(17)

where χ
f
z (�q, ω), χ

f
+−(�q, ω) and χ

f
−+(�q, ω) are dynamical susceptibilities of a non-interacting

free-electron gas under the magnetic field η0 + h at T = 0 and so they are given analytically by
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the use of the Lindhard function. Under the approximation in equation (17), the effects of the
spin fluctuation are included through χ̂s(0, 0) defined in equation (11), and Fs(�q, ω), which
is estimated by the use of the dynamical susceptibilities of the free-electron gas, expresses the
dependencies on the wave vector �q and the frequency ω of the dynamical susceptibilities. As
discussed in the previous section, we have adopted the local mean square approximation (Hertz
and Klenin 1974, 1977) where the long-wavelength and the low-frequency components of the
spin fluctuation are taken into consideration exclusively and the short-wavelength and the high-
frequency components are cut off. The substitution of the dynamical susceptibilities of a free-
electron gas is considered to be appropriate in this long-wavelength and low-frequency region.

Thus, on introducing the cut-off wavenumber qc in the integral in equation (9) with respect
to �q, the variances (σα)2 in equation (9) are approximated as

(σα)2 = 3

π
NeU

2χ̂α

∫ q̄c

0
q̄2 dq̄

∫ ∞

0

(
1

eβω − 1
+

1

2

)
Im 2α(�q, ω) dω (18)

where α = z, t and

2z(�q, ω) = Fz(�q, ω)

1 − Uχ̂zFz(�q, ω)

2t (�q, ω) = 1

2

[
F+−(�q, ω)

1 − Uχ̂tF+−(�q, ω)
+

F−+(�q, ω)

1 − Uχ̂tF−+(�q, ω)

]
.

Here, χ̂z and χ̂t are defined in equation (11), q̄c = qc/kf (kf is the Fermi wavenumber of a
free-electron gas) and Ne is the number of free electrons per atom and per spin. The parameters
required for the numerical calculation are the number Ne and the Fermi energy ζf of the free
electrons. The hole description is employed in the numerical estimation of equation (18). So,
Ne is equal to the number of d holes which is given as Ne � 1.35/(atom spin) (Tanaka and
Harima 1998). The Fermi energy ζf is determined from the relation ζf = 3

2 Ne/
〈
ρCo

〉
for the

free electron, where
〈
ρCo

〉
is the averaged partial DOS for a Co atom in YCo2 as given by

equation (15). Finally, we have two adjustable parameters, namely, the Coulomb interaction
U and the cut-off wavenumber q̄c, in the numerical calculation. The adjustable parameters U

and q̄c were made as the calculated values of the paramagnetic susceptibility and the critical
field Bc of the metamagnetic transition of YCo2 at low temperature were made as close as
possible to the experimental ones. U = 1.068 eV and q̄c = qc/kf = 0.491 were chosen as
a result. The value of U = 1.068 eV is somewhat large compared to the value U = 0.7 eV
obtained by photoemission spectroscopy (PES) and inverse PES experiments (Duo et al 1994).

The magnetization at T = 0 of YCo2 has been calculated from equation (9) and is shown
by a solid line in figure 2 together with the experimental results (Goto et al 1990, 1994) and
the ones calculated within the Hartree–Fock theory given in section 2. This gives the critical
field of the metamagnetic transition Bc ∼ 54 T. The paramagnetic susceptibility at T = 0
has been calculated as χp = 1.70 × 10−3 emu mol−1 from equation (13); this gives the
enhancement of the paramagnetic susceptibility χp/χband

p � 24.1 where χband
p = 2ρCo(ζ0).

The mass enhancement factor in equation (14) is obtained as γehs � 2.63 which is less than
half of the experimental value γ

exp

ehs � 5.9 (Tanaka and Harima 1998). The disagreement with
the experimental result will be lessened to some extent by considering the mass enhancement
originating from the electron–phonon interaction. Tanaka and Harima have obtained γehs � 5.9
from the self-energy of Co d electrons calculated in the second-order perturbation of U by the
use of U = 1.8 eV. However, it is noted that such a large value of U makes the paramagnetic
state of YCo2 unstable as discussed in section 2. It is seen that the zero-point spin fluctuation
strongly enhances the paramagnetic susceptibility and the electronic specific heat coefficient
at low temperature and makes the hysteresis of the magnetization curve calculated within the
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Hartree–Fock theory, which is too large compared with the experimental one, remarkably
small. Figure 3 gives the amplitudes of the spin fluctuations for the magnetic field—where
a broken line, a dotted line and a solid line denote, respectively, the longitudinal component
(δmz

0)2, the transverse component (δmt
0)2 and their sum δm2

0 = 2(δmt
0)2 + (δmz

0)2—which
are defined as σ 2

z = (U/2)(δmz
0)2 and σ 2

t = (U/2)(δmt
0)2. The longitudinal spin fluctuations

are properly suppressed under the stronger external magnetic field as seen from figure 3. The
temperature dependence of the paramagnetic susceptibility of YCo2 has been calculated from
equation (13) and the result is shown in figure 4 together with the experimental ones (Goto
et al 1990, 1994). It gives Tmax � 275 K for YCo2. Here, Tmax is defined as the temperature
at which a paramagnetic susceptibility shows a maximum in the temperature dependence.
Figure 5 gives the amplitudes of the spin fluctuations for the temperature and a broken line,
a dotted line and a solid line denote, respectively, the zero-point component δm2

0, the thermal
component δm2

T and their sum δm2. It is clearly seen from figure 5 that the strong enhancement
of the paramagnetic susceptibility at T ∼ 0 is caused by the zero-point spin fluctuation and
that a broad maximum in the temperature dependence of the paramagnetic susceptibility at
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Figure 3. Magnetic field dependences of the amplitudes of the zero-point spin fluctuation (solid
line), the longitudinal component (broken line) and the transverse component (dotted line) at zero
temperature for U = 1.068 eV and q̄c = 0.491.
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Figure 4. Temperature dependences of the paramagnetic susceptibility for U = 1.068 eV and
q̄c = 0.491 (solid line). The broken line shows the experimental result (Goto et al 1990, 1994).
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Figure 5. Temperature dependences for the amplitudes of the total spin fluctuation (solid line), the
zero-point component (broken line) and the thermal component (dotted line) for U = 1.068 eV
and q̄c = 0.491.

T ∼ Tmax is caused mainly by the thermal spin fluctuation. At the same time, the amplitude
of the zero-point spin fluctuation becomes dependent on the temperature as a result of the
coupling to the thermal spin fluctuation.

We have carried out similar calculations for LuCo2. A calculated DOS for LuCo2 has been
given by Tanaka and Harima (1998) and it resembles that of YCo2. The adjustable parameters
are chosen as q̄c = 0.503 and U = 1.037 eV, which are close to those of YCo2. Calculated
results are shown in table 2 together with those for YCo2.

Table 2. Calculated results for physical quantities in the metamagnetism of YCo2 for q̄c = 0.491
and LuCo2 for q̄c = 0.503.

U Bc δm0 χp(T = 0) Tmax χp(T = Tmax)

(eV) (T) (µB /atom) γehs (10−3 emu mol−1) (K) (10−3 emu mol−1)

YCo2 (theory) 1.068 53.6 0.23 2.63 1.70 275 4.26
(experiment) 70.0 5.93 1.83 240 3.81

LuCo2 (theory) 1.037 62.1 0.23 2.97 1.31 378 3.28
(experiment) 73.6 4.67 1.41

Now, it is conventional for the effect of the zero-point fluctuation to be regarded as
renormalized with respect to the effective value of the Coulomb interaction U . However,
it has been shown in this work that the zero-point spin fluctuation seriously changes the single-
electron spectrum and so the DOS rather than the effective value of the Coulomb interaction.
Recently, the importance of the zero-point spin fluctuation has been pointed out in various works
(Solontsov and Wagner 1994, 1995, Lacroix et al 1996). Solontsov and Wagner showed that
the quantum dynamical effects of the zero-point spin fluctuation give rise to the strong spin-
anharmonicity effects neglected in the conventional spin-fluctuation theory of weak itinerant-
electron magnetism. They questioned the common view that the zero-point spin fluctuation
gives rise to temperature-independent effects which may be included in the effective model
parameters, e.g., in the exchange interaction constant. A local magnetic moment at zero
temperature is one of the physical quantities which measure the importance of the zero-point
spin fluctuation. Solontsov and Wagner estimated the zero-temperature values for the local
magnetic moments of weak itinerant magnets, e.g., δm0 = 0.85µB /atom (µB is the Bohr
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magneton) for MnSi, which may be compared with polarized neutron scattering data (Ziebeck
et al 1986). In this work, δm0 ∼ 0.23µB/Co has been obtained for the values of the local
magnetic moments at T = 0 for YCo2 and LuCo2. It is considered that itinerant-electron
metamagnets such as YCo2 and LuCo2, where the paramagnetic susceptibility is strongly
exchange enhanced, are typical systems as well as weak itinerant-electron magnets, for which
the zero-point spin fluctuation plays important roles in the magnetism.

In conclusion, we have investigated the metamagnetism of YCo2 and LuCo2 by means of
a self-consistent calculation based on the spin-fluctuation theory including the contribution of
both the zero-point spin fluctuation and the thermal spin fluctuation, and have given a systematic
explanation for the experimental results on itinerant-electron metamagnets. The itinerant-
electron metamagnetism in these systems originates from the characteristic shape, namely the
valley structure, of the DOS around the Fermi energy. Owing to this characteristic shape of
the DOS, the zero-point spin fluctuation and the thermal spin fluctuation cause, respectively,
the strong enhancements of the paramagnetic susceptibility and the electronic specific heat
coefficient at low temperature and a broad maximum in the temperature dependence of the
paramagnetic susceptibility at finite temperature.
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